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Summary

In order to cope with increasing complexity in energy systems due to rapid changes

and uncertain future developments, the evaluation of multiple scenarios is essen-

tial for sound scientific system analyses. Hence, efficient modeling approaches and

complexity reductions are urgently required. However, there is a lack of scientific

analyses going beyond the scope of traditional energy system modeling. For this

reason, we investigate the potential of metamodels to reduce the complexity of

energy system modeling. In our explorative study, we investigate their potential

and limits for applications in the fields of electricity dispatch and design optimiza-

tion for heating systems. We first select a suitable metamodeling approach by con-

ducting pre-tests on a small scale. Based on this, we selected artificial neural

networks due to their good performance compared to other approaches and the

multiple possibilities of network topologies and hyperparameter settings. As for the

dispatch model, we show that a high accuracy of price replication can be achieved

while substantially reducing the runtimes per investigated scenario (from 2 hours

on average down to less than 30 seconds). With the design optimization model, we

find double-edged results: while we also achieve a substantial reduction of runtime

in this case (from �0.8 hours to less than 30 seconds), the simultaneous forecasting

of several interdependent variables proved to be problematic and the accuracy of

the metamodel shows to be insufficient in many cases. Overall, we demonstrate

that metamodeling is a suitable approach to complemement traditional energy sys-

tem modeling rather than to replace them: the loss of traceability in (black-box)

metamodels indicates the importance of hybrid solutions that combine fundamen-

tal models with metamodels.
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1 | INTRODUCTION

As defined by the Intergovernmental Panel on Climate
Change (IPCC), energy systems comprise the “produc-
tion, conversion, delivery, and use of energy.”1 Each of
these components is subject to major changes and highly
uncertain developments.2,3 Energy system models
(ESMs) are used to depict energy system components and
their behavior to simulate this transition in a laboratory-
like setting. In the current energy transition, energy sup-
ply, demand, and policies are changing at an unprece-
dented rate.4 Hence, ESMs have recently grown in
popularity.5 The results of ESMs are often intended to
serve as guidance for decision-makers from politics and
industry regarding the future development of energy sys-
tems.6 Therefore, a broad variety of future scenarios must
be depicted by such models to account for the high levels
of inherent uncertainty.7

As the complexity of energy systems increases, so
does the complexity of the models that represent them.5,8

Changing framework conditions in the energy sector,
combined with further developments in information and
data science, encourage the development of highly com-
plex models that are capable of depicting certain parts of
the energy system with a high degree of detail, such as

temporal and spatial resolutions.9,10 However, the aim of
energy system modeling should be to create models that
are as simple as possible and as complex as necessary to
achieve the goal of “parsimony” as defined by DeCarolis
et al.11 The virtue of parsimony in energy system model-
ing does not lose its importance as computing power
increases. Increasing uncertainty due to increasing com-
plexity in (real world) energy systems must be addressed
by covering large scenario spaces which restrict the com-
putational complexity of models.

One promising approach to counteract the increasing
complexity of ESMs is metamodeling.12 As is shown in
Figure 1, metamodeling describes the process of replacing
an ESM by directly depicting the relationships of the
input and output vectors using less complex methods of
approximation. Most techniques for complexity reduction
are applied to either input data (data aggregation), the
number of model components, or the component rela-
tionships (simplification or omission of system relation-
ships).5 In contrast, metamodeling is applied to achieve
sufficiently accurate solutions in shorter runtimes,
thereby enabling the assessment of a broader variety of
scenarios, motivating the application of metamodels.

A recent review of studies on the subject of meta-
modeling by Zaibi et al13 shows that various approaches

FIGURE 1 Energy system

model (ESM) and metamodeling
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are being pursued, such as metamodels based on classical
polynomial functions,14,15 stochastic metamodels,16–18

and those using artificial neural networks (ANNs).19–22

We provide a more comprehensive overview of existing
approaches to metamodeling in Section 2.

In this study, we focus on metamodels using artificial
intelligence, more specifically deep learning. Whereas
other studies have focused on particular applications
such as building energy systems (see References
15,18,22), we go beyond the scope of existing analyses by
comparing the benefits and drawbacks of different meta-
models for different applications. Our fields of applica-
tion comprise (simplified) unit commitment models and
design optimization models. We ask the following
research questions:

• Can a reduction in complexity be achieved by
replacing classical energy system optimization models
with deep learning-based metamodels?

• How can metamodels be applied to increase the num-
ber of scenarios investigated under given computa-
tional restrictions?

The remainder of this work is structured as follows.
First, we summarize relevant literature on meta-
modeling, ANNs, random forests, and challenges in deep
learning in Section 2. We then introduce our methodol-
ogy in Section 3. Thereinafter, we demonstrate our
results, first for pre-tests and subsequently for full ana-
lyses. We provide a discussion and derive general model-
ing recommendations in Section 5. The paper concludes
in Section 6.

2 | THEORETICAL BACKGROUND

Having introduced our work, this section provides an
overview of relevant literature on existing approaches
to metamodeling. Furthermore, we introduce ANNs
and random forests and analyze their potential for
reducing the complexity of ESMs. Finally, we summa-
rize challenges inherent to processes based on deep
learning.

2.1 | The concept of and approaches to
metamodeling in energy system analysis

The prefix “meta” originates from Greek and means that
something is on a higher level, standing above or behind
another category.23 According to Kühne24, the prefix
“meta” is used to indicate that a term is applied twice. A
metamodel is, therefore, “a model of models”.25

Several approaches to metamodeling can be found in
the literature, for example, Simpson et al.26 demonstrate
the potential of metamodels to enable immersive engage-
ment in energy system modeling. However, to the
authors' knowledge, no general assessment regarding a
metamodel strategy for energy system optimization
models (in particular for dispatch and design optimiza-
tion models) has been published to date.* For this reason,
we summarize the previous fields of applications and the
possible transferability of metamodels to our case in
Table 1.

2.2 | Method portfolio for metamodeling
of ESMs

In the following, we present the theory behind the selec-
tion of methods that we use as metamodels in our explor-
ative study.

2.2.1 | Random forests

Random forests consist of a multitude of individual deci-
sion trees and therefore belong to the ensemble learning
techniques family.42 Decision trees are a machine learn-
ing method that relies on the wisdom of the crowd, which
means that the aggregated answer of thousands of ran-
dom people is, in many cases, more likely to be correct
than an expert's answer.43 Transferred to random forests,
this indicates that even if a single decision tree is highly
sensitive to existing noise in the training data, the aver-
age of a large number of decision trees is not (given that
the trees are not correlated).

To ensure the diversity of the decision trees, they are
focused on random subsets of the training set. Sampling
of the subsets can be done with and without replacement.
Replacement means that samples can be drawn multiple
times from the training set when creating the random
subsets. No replacement means that the subsets consist of
unique elements (no duplicates). Sampling performed
with replacements is called bagging (short for bootstrap
aggregating) whereas that performed without replace-
ment is called pasting.43 The overall result of the random
forest is calculated by aggregating the results of the indi-
vidual decision trees. The procedure for training and
training the set sampling of a random forest is shown in
Figure 2. The training processes of the individual deci-
sion trees can take place in parallel, and the same applies
to the predictions.43

During the training process, the decision tree and its
branches are constructed for each of the random samples.
The root of the tree contains the entire training dataset.
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TABLE 1 Literature overview

Metamodel type References Field of application Methodology

Transferability to energy
system optimization
models

Inductive learning 27 Process control, diagnostic
systems

Automation of knowledge-
acquisition processes.
Partitioning of data into
discrete categories.
“Training” via
backpropagation, using
artificial neural
networks (ANNs) or
random forests.

Transferability is
questionable as this
method performs better
with discrete-valued data.

Stochastic models
(Kriging, Gaussian
process regression)

12,16,17 Geostatic, non-linear
problems, modeling of
deterministic computer
responses

Application of a global
optimization method to
identify maximum
likelihood estimators.
Values at locations with
no sample can be
approximated using
surrounding measured
values.

Transferability is
questionable as we focus
on the metamodeling of
linear optimization
models. No consideration
of scenario probabilities
in our case.

Dual estimation
models

28,29 Performance monitoring,
fault detection, mass flow
monitoring

The state of a dynamic
system and the
underlying model are
estimated simulations.
Different types of
algorithms, such as dual
Kalman filters are used.
The unknown model
can be approximated
using neural networks,
among other methods.

Transferability is
questionable as we focus
on the metamodeling of
white-box models for
which equation systems
are known.

Artificial neural
networks

19,21,26,27–30 Wide fields of application,
tested in the context of energy
systems, for example, for
assessments of the security
of electricity supply

Training of the ANN
usually done via
backpropagation.
Further explanations in
Section 2.2.

Transferability is possible as
the adaptation of
structure, size and
hyperparameter settings
allows for application as
comprehensive
approximators.

Polynomial function
models

12,13,17,21,26 Wide fields of application, for
example, metamodel-based
design optimization
(MBDO) and multiple
regression

Depicting relationships
between several
exogenous and
endogenous variables.

Transferability is
questionable as
polynomial functions are
easy to use and clear in
parameter sensitivity, but
not sufficiently accurate
and limited by the chosen
function type.

Random forests 31,32 Wide fields of application,
typical use cases being
classification and regression

Several slightly differently
trained decision/
regression trees with
subsets of training data.
While a single tree is
highly sensitive to the
noise in the training set,
the average of many
trees is not. Further

Transferability is possible
due to the strong
performance in highly
heterogeneous data sets.

(Continues)
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To obtain the next level, a selection tuple σi, containing
the corresponding input feature i and threshold ti, is
applied:

σi ¼ ⟨i, ti⟩with i� 1,n½ �, ti � min x ið Þ
� �

,max x ið Þ
� �h i

ð1Þ

For each tuple, a decision tree is constructed. At each
tree node, the tuple is divided based on a threshold that
is set during the training process. This results in two sub-
sets (branches), one with values smaller than the thresh-
old and one with values larger or equal than the
threshold. The goal of training the decision tree is to find
the optimal selection tuples and thresholds to avoid
unbalanced and very deep decision trees.44 For further
information regarding the precise procedure of the train-
ing process of a decision tree, see Geron43 and
Bonnaccorso.44

In this study, besides neural networks, random forest
models are applied as a possible approach to meta-
modeling, as they often exhibit better performance on
heterogeneous datasets. This is because random forests
can represent very different data in different decision
trees.31

2.2.2 | Feed-forward ANN

According to the Encyclopedia of Machine Learning by
Kakas et al,33 an ANN “is a computational model based
on biological neural networks.” The simplest form of
ANN, the perceptron, was first developed by Rosenblatt
in 1958.34 As for adaptive systems, ANNs are used exten-
sively in various fields of application. They are informa-
tion processing systems that consist of a large number of
simple units, or neurons, each of which passes

TABLE 1 (Continued)

Metamodel type References Field of application Methodology

Transferability to energy
system optimization
models

explanations in
Section 2.2.

Spline interpolation
models

13 Metamodel-based design
optimization (MBDO)

Interpolation of given
nodes using piecewise
polynomials of a low
degree. The results of
spline models do not
oscillate due to
unfavorably-determined
knots.

Transferability is
questionable as a dynamic
simulator and high
number of system
simulations are required
for finding the optimal
configurations.

FIGURE 2 Random forest training with bagging training set sampling (based on Reference 43)
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information through directed connections. Complex
problems can be represented by different network topolo-
gies, that is, different ways of connecting individual neu-
rons. An essential aspect of ANNs is their ability to learn
a task independently during the training process without
having to explicitly program the neural network.30,35,36

As the systemic relationships are learned rather than
explicitly specified, the programming effort required for a
neural network is significantly lower than the implemen-
tation of an ESM. This will be discussed in detail in
Section 5.†

The fundamental elements of a neural network are
the neurons. These calculate an output signal by applying
the given input to the so-called activation function. The
neurons are connected by directed, weighted edges. The
weights inhibit or enhance the input signals and are iter-
atively adjusted during training. Adjustments are made
based on the input weighted with the previous error and
learning rate.30

Figure 3 shows the structure of a simple feed-forward
ANN consisting of an input layer, two hidden layers, and
one output layer. This network topology is characterized
by information simply traveling forward. No path leads
back from a neuron, either directly or indirectly through
an intermediate neuron.30

2.2.3 | Long short-term memory neural
network

Aside from the feed-forward neural network, another
form of network topology is applied in this study, namely
the long short-term memory (LSTM) neural network,
which is a special type of recurrent ANN that was first
introduced by Hochreiter and Schmidhuber in 1997.38 In
contrast to feed-forward neural networks, recurrent

neural networks have edges that return to themselves,
enabling that information to travel through time. There-
fore, the neurons receive current information from the
previous layer and, additionally, from themselves from
the previous pass.39 The problem, however, with recur-
rent networks is that the error signals flowing back in
time tend to either blow up (“exploding gradients”) or
vanish (“vanishing gradients”). The weights have an
exponential influence on the temporal evolution of the
backpropagated error. Thus, exploding gradients may
lead to oscillating weights and, in the case of vanishing
gradients, the networks cannot carry information forward
from earlier time steps to later ones if the sequence is
long enough. This means that the networks suffer from
short-time memory, an issue that is addressed by adding
a “forget gate” to LSTM neural networks.38

An exemplary simple LSTM neural network is
depicted in the left part of Figure 4. The structure is simi-
lar to a feed-forward neural network, with the additional
returning edges as explained above. The network topol-
ogy can be optionally extended by further hidden and
LSTM layers. The right part of Figure 4 shows the struc-
ture of a single LSTM neuron, including the three differ-
ent gates: input, output and forget.

The forget gate is the main difference to a
conventional recurrent neural network. Dur-
ing the training process, this gate learns to
decide what information should be kept and
what should be forgotten.40 The use of the
forget gate prevents gradients from vanishing
and allows both short-term and long-term
sequences to be reproduced.

The input gate updates the cell state by pass-
ing the previous hidden state and current
input into the activation function, which is
analogous to the conventional neuron. The
new cell state results from the outputs of the
forget and input gates.40

The output gate determines the new hidden
state analogously to a conventional neuron.
The hidden state contains information about
previous inputs and is also used for predic-
tions. Finally, the updated cell and hidden
states are carried over to the next time step.40

In addition to the network topologies explained in
this section (feed-forward neural network and LSTM
neural network), there are various other network topolo-
gies. Further approaches have been tested in this study
(eg, convolutional and concatenated neural networks)

FIGURE 3 Simple feed-forward neural network (based on

Reference 30)
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but these did not lead to sufficiently good results. There-
fore, these approaches are not explained here and, for
further information, the interested reader is referred to
Reference 39.

3 | METHODS

Figure 5 depicts our process of building and training
the metamodels. Step one, the “method selection,” is
based on the literature research presented in
Section 2.1 and results in selecting random forest,
feed-forward neural networks, and LSTM neural net-
works as the most promising methods. We use two
fundamentally different types of ESOMs, namely a unit
commitment model for simulating wholesale electric-
ity prices for Germany and a design optimization
model for defining the energy supply of a building.
Both models are white-box or fundamental models,
that describe the system behavior via a mathematical
system of variables and equations. The assumption is
that the underlying systemic mechanisms are known
and can therefore be modeled. In the second step, the
respective input and output data of the models is
preprocessed. This process includes validation,
encoding, and normalization and is further described
in the following sections of Chapter 3. The third step
comprises setting up the metamodels. Before fully
training the models, pre-tests are conducted based on
simplified models to validate the approaches and to
decide which approach to pursue further. Following
the pre-tests, the methodology was conveyed and
extended to the non-simplified models.

For all applications shown in this study, we use the
open-source platform KNIME,47 which was first devel-
oped at the University of Konstanz in 2004. KNIME
offers the possibility of integrating a large number of
the most common machine learning packages, includ-
ing Keras and Tensorflow.47,48 An extract of the
workflows built into KNIME can be found in
Appendix A (see Figure A1).

3.1 | Metamodeling of the unit
commitment model

In the following, we introduce the relevant input
and output data of the unit commitment model. With
T¼ 1,2,…,8760f g defining the optimization time hori-
zon, G¼ 1,…,25f g defining the considered set of genera-
tion technologies, and N ¼ 1,…,401f g defining the
number of considered nodes.

It should be noted that the unit commitment model
requires additional input data, such as fuel prices and
power plant efficiencies. As the availability of renewable
feed-in and demand constitute the main drivers of the
electricity price and all other inputs are held constant,
the metamodel is limited to input categories shown in
Table 2.‡ 80% of the data is used for training, 20% for
validation.

FIGURE 4 LSTM neural

network (l.) and LSTM neuron (r.)

(based on References 39,41)
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FIGURE 5 Schematic representation of the process for

building the metamodels
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The input factor time (ie, hour of the year) was fur-
ther decomposed. Figure 6A) shows the general proce-
dure for encoding time stamps. For the day of the week
and hour of the day, we use one-hot encoding. For each
day of the week or hour of the day, a binary column is
created that is shown exemplarily for the day of the week
encoded in Figure 6B). We include time as an input fac-
tor because electricity prices differ during certain periods
or for certain events, such as weekday against weekend
prices or peak against off-peak prices.

For monthly seasonality, the one-hot encoding method
should not be applied because the influence of the order of
the months would be lost. This means that the metamodel
would not acknowledge that February and March are adja-
cent and that December is continuously followed by
January. The intention is to represent seasonal trends
rather than representing monthly differences. We solve
this by employing periodic encoding. The idea is that the
metamodel is not only informed about the current month
but also on the temporal proximity of other months.
Therefore, during encoding, certain energy values
(between 0.0 and 1.0) are applied to each month
depending on the distance between the current training
day and month.51 Although the days of the week and the
hours of the day have a certain order as well, the more
valuable information here is the overall difference between
certain days and hours rather than a weekly or daily trend.

In summary, the input data for the metamodel con-
sists of the following features: D n, tð Þ [MWh], C n,g, tð Þ
[MW], α n,g, tð Þ [MW], year, month (encoded), day
(encoded), hour (encoded). The value to be predicted is
the electricity price in EUR/MWh.

To be able to make a robust statement about the perfor-
mance, the availabilities, installed capacities,52 and load for
the years 2015-201753 are used as input. The day-ahead spot
prices from 2015-201753 and the equivalent model prices,
respectively, are used as benchmarks. Furthermore, a
10-fold cross-validation is carried out (see Section 3.4 for
more details). Prior to this, the hyperparameters are opti-
mized using Bayesian optimization (using the Tree Parzen
Estimator [TPE]) based on the real data. (For further

information about the optimization method, refer to Refer-
ences 55,56). The optimized hyperparameters are adopted
for the metamodel, which is trained on the model data.§

3.2 | Metamodeling of the design
optimization model

The next step is to apply the metamodel to another type
of model, namely a design optimization model.57 The
main differences from the dispatch model are, first, that
future investments are predicted ex-ante, that is, there is
no real data for comparison, and second, the input and
output data have different dimensions. The input data
consists of four different time series (each comprising
8,760 time steps, that is, 1 year at hourly resolution)
while the output data is a single value per optimized fea-
ture. Furthermore, the output data includes continuous
as well as binary and integer values with different units.
We introduce the relevant input and output data for the
design optimization model (Table 3).

The design optimization model was run for 733 differ-
ent types of buildings and the results serve as the data
basis for our metamodeling approach. In our approach, we
train different models for each output feature. An alterna-
tive approach would have been to train a model predicting
all output features as a single feature vector. This can be
challenging in terms of model fitting if certain output fea-
tures are hard to predict based on the input features we
selected. This assumption was tested and confirmed during
the pre-tests. Therefore, we decided to build individual
models to gain further insides into which of the output fea-
tures is suitable for metamodeling.

The hyperparameter tuning is done manually to max-
imize the coefficient of determination of each output fea-
ture. These hyperparameters were considered: number of
epochs, number of hidden layers, number of hidden neu-
rons, and activation function. The evaluation was per-
formed in two separate runs. In each of these, 80% of the
data set was randomly selected for training and the
remaining 20% for evaluation.

TABLE 2 Input and output data of the unit commitment model used in the metamodeling approach

Name Description Unit

Input data

D n, tð Þ�ℝþ 8n�N , 8t�T Electricity demand during hour t MWh

C n,g, tð Þ�ℝþ8n�N ,8g�G,8t �T Installed capacity at node n of generator type g during hour t MW

α n,g, tð Þ�ℝþ8n�N , 8g�G, 8t�T Availability factor at node n of generator type g during hour t %

Output data

P tð Þ�ℝþ8t �T Electricity price during hour t (equivalent: day-ahead spot price) EUR/MWh
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3.3 | Pre-testing based on simplified
models for narrowing the method scope

By conducting pre-tests, we intend to narrow down the
methods applied for metamodeling to the most promising
ones. We use simplified versions of the unit commitment
and the design optimization models and reduced data
sets during the pre-tests. During the pre-tests, no cross-
validation is performed.

For the simplified unit commitment model, we reduce the
data sets to T¼ 1,2,…,24f g defining the optimization time
horizon, G¼ 1,…,8f g defining the considered set of gen-
eration technologies, and N ¼ 1f g defining the number of
considered nodes. The electricity prices as model output to
be represented by the metamodels are determined using
the simplified dispatch model. According to this procedure
2,400 data points are determined to train the metamodel.
80% of the data is used for training, 20% for validation. For
pre-testing the unit commitment model, we build the
metamodels based on the following types of methods: Ran-
dom forest and feed-forward neural networks.

For the design optimization model, the given dataset,
which consists of 733 different buildings, a test data set with
250 buildings was extracted via random sampling. Based on
this dataset, different metamodels with different network
topologies were evaluated. For this purpose, the metamodels
were trained with 80% of the test dataset, determined by ran-
dom sampling, and the remaining 20% was used to evaluate
the performance of the different approaches. For pre-testing
the design optimization model, we build the metamodels
based on the following types of methods: Feed-forward neu-
ral networks, LSTM neural networks, convolutional neural
networks, and concatenated neural networks).

3.4 | Ensuring the generalizability of the
metamodels

In this study, we focus on supervised learning processes.
The machine learning algorithms (in our case random

forest, feed-forward neural networks, and LSTM neural
networks) receive both the input and output data from
the original model. During the training process, the meta-
model learns the relationships between the input and
output data based on the given training dataset by mini-
mizing the error e between the given model output y¼
y1,…,yNð Þ and the output predicted by the metamodel by¼by1,…,byNð Þ for a total of N data points:

min e y,byð Þ ð2Þ

The aim is to ensure that the relationships learned
during the training process can be applied to input data
unknown to the metamodel and thus an output with
high accuracy can be determined.45 If this generalization
ability is achieved, the metamodeling approach will be
considered successful.

A typical performance measure for regression tasks is
the mean squared error (MSE), respectively the root mean
squared error (RMSE),43 which is calculated as follows:

e y,byð Þ¼MSE y,byð Þ¼ 1
N

XN
n¼1

yn�bynð Þ2 ð3Þ

e y,byð Þ¼RMSE y,byð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
n¼1

yn�bynð Þ2
vuut ð4Þ

Another performance measure is the coefficient of
determination R2:

R2 y,byð Þ¼ 1�
PN
n¼1

yn�bynð Þ2

PN
n¼1

yn� yð Þ2
with y¼ 1

N

XN
n¼1

yn, ð5Þ

where y is the average value in the reference dataset.
Also, the mean average percentage error (MAPE) is

FIGURE 6 (A) Encoding time stamp

general procedure; (B) one-hot encoding (based

on Reference 51)
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commonly used for measuring the performance
of models that forecast prices and is therefore
well-transferable to our application. It is calculated as
follows:

MAPE y,byð Þ¼ 1
N

XN
n¼1

yn�byn
yn

����
���� ð6Þ

Some difficulties during the design and training process of
machine learning algorithms have been identified by Refer-
ence 43. These mainly comprise the problems of over- and
underfitting, which are illustrated in Figure 7. Underfitting
indicates that themodel representing the system's relationship
is too simple to represent the system dynamics.44 The model
can neither map the system relationship nor the samples,
which leads to a high training error and low generalization
ability. Overfitting, on the contrary, indicates that the noise of
the samples has been learned beyond the system relationship
and themodel is too complex regarding the number and noise
of the training set.43 Although overfitting leads to a small train-
ing error, it also leads to the low generalizability of themodel.

To counteract underfitting, the model can be extended.
Counteracting in the case of overfitting requires model
simplification, reducing the noise in the training data, or
extending the training dataset to reduce the effect of exis-
ting data noise.43 One possible solution to this is the
adjustment of the hyperparameters.

Hyperparameters are initialized prior to the training and
do not change due to the learning process. These parameters
control the training algorithm and must be optimized to
achieve the best possible performance in the model.

Random forests, as well as ANNs, possess a multitude
of hyperparameters that can be optimized, whereby the
number of hyperparameters of the neural network
exceeds the number of random forests.31,46 Due to the
large number of possible hyperparameters to optimize, a
selection of hyperparameters to be optimized is made in
this study. These include the following:

ANN: number of epochs, number of hidden layers,
number of hidden neurons, activation function.

Random forest: number of decision trees, minimum
number of data points of a node to branch, minimum
number of data points of a leaf, maximum tree depth.

Other hyperparameters are held constant at their pre-
defined standard levels.

To ensure generalizability, validation of the hyper-
parameter tuning should not be limited to the training
error, as this is very low in the case of overfitting. There-
fore, the k-fold cross-validation method is used here. This
method prevents the loss of prediction accuracy due to a
smaller training dataset caused by the separation of the
validation data and, at the same time, enables a robust
estimation of the model's performance.

48

The k-fold cross-
validation is displayed schematically in Figure 8.

4 | RESULTS AND DISCUSSION

In the following section, we present our metamodeling
results for the unit commitment and the design

TABLE 3 Input and output data of the design optimization

model used in the metamodeling approach

Name Description Unit

Input data

ACbuilding tð Þ�ℝþ8t�T Power consumption of
the building

kWel

AChot water tð Þ�ℝþ8t�T Power consumption for
hot water

kWel

Hbuilding tð Þ�ℝþ8t �T Heat consumption of
the building

kWth

Hhot water tð Þ�ℝþ8t �T Heat consumption for
hot water

kWth

Output data

ACnode �ℝþ Maximal internal
electricity load

kWel

Hnode �ℝþ Maximal internal heat
load

kWth

Esupply �ℝþ Electricity supply kWel

GS Gas supply kWth

LS Log supply kWth

PVtariff �ℝþ Feed-in tariff for
photovoltaics

kWel

HPtariff Heat pump tariff kWel

FC Fuel cell kWel

PV 1 Photovoltaic first roof kWel

PV 2 Photovoltaic second
roof

kWel

ST1 Solar thermal first roof m2

ST2 Solar thermal second
roof

m2

DH District heating kWth

EH Electric heater kWth

FP Fireplace kWth

GB Gas boiler kWth

HP Heat pump kWth

B Building design heat
load

kWth

BAT Electric battery kWhel

HS Heat storage kWhth

Note: See Appendix C, Table C1 for a more detailed overview of the model's
properties.
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optimization models. First, the results from the pre-tests
are presented, followed by the extensive analyses based
on the non-simplified models. The unit commitment
model was investigated to evaluate whether metamodels
are capable of forecasting the model's main output,
namely the electricity price. The evaluation was carried
out ex-post using real data. The second metamodel
building upon the design optimization model tries to
emulate the recommendations made for optimal future
investments in the energy supply system of a single
building. This evaluation is carried out ex-ante using the
model's output.

4.1 | Pre-tests based on the simplified
dispatch model

In the following, we present the results of the pre-tests.
The results for the unit commitment model are shown in
detail to illustrate the general procedure.

The results of the pre-tests for the unit commitment
model are depicted in Figure 9. Shown in red are the prices
determined by the simplified dispatch model. The dotted red
line represents the price prediction of the metamodel based
on random forest and the dotted black line the prediction of
the metamodel based on a feed-forward neural network. The
prices in the range from 50 EUR/MWh to 60 EUR/MWh are
met fairly well, but the prediction for the peaks is not always
reliable. We perform a hyperparameter optimization using
the coefficient of determination R2 as a performance measure
to be maximized. A random search49 is applied to search a
previously defined space of hyperparameter configurations to
determine the best combination.

The pre-tests result in:

Random forest : R2¼ 0:74,MSE¼ 35:33
EUR2

MWh2

� �
,

RMSE¼ 5:94
EUR
MWh

� �
, MAPE¼ 2:18%

FIGURE 7 Under- and overfitting (own

illustration, based on Reference 43)

Training data set

Validation TrainingTraining Training

Training ValidationTraining Training

Training TrainingTraining Validation

Training TrainingValidation Training

Validation 
result

Validation 
result

Validation 
result

Validation 
result

Overall result

FIGURE 8 K-fold cross-validation

(k = 4) (own illustration, based on

Reference 43)
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Neural network :R2 ¼ 0:73, MSE¼ 32:11
EUR2

MWh2

� �
,

RMSE¼ 5:67
EUR
MWh

� �
, MAPE¼ 1:88%

Given that the results of the pre-tests are based on a
relatively small number of data points, it can be shown
that random forests and feed-forward neural networks
seem to be generally suitable for the metamodeling of a
dispatch model. Although the performance measures
of the two tested approaches do not significantly differ,
the ANN approach is used in the following analysis.
This decision is based on the fact that the variety of
possible network topologies of neural networks signifi-
cantly exceeds that of modeling random forests,44 all-
owing for even further improved performance. Also,
several studies (eg, Reference 50) reveal that the per-
formance of random forests in forecasting time series is
weaker than the performance of neural networks.
Therefore, we only examine feed-forward neural net-
works as metamodeling approaches in our subsequent
analysis for the unit commitment model. The results
are shown in Section 4.2.

For the design optimization model, we trained meta-
models based on a simplified version of the design opti-
mization model. We tested the prediction of all 20 output
values and the prediction of single output values using
separate metamodels. The results of the pre-tests showed
that the simultaneous prediction of all output features
based on a single hyperparameter optimization does not
lead to the expected metamodel performance. We, there-
fore, use individual models for each output feature for
the non-simplified case. The most promising approaches
were feed-forward neural networks and an LSTM neural
networks. These two methods are applied to the entire
dataset and the results are shown in Section 4.3.

4.2 | Forecasting of price time series
using metamodels

We compare the price forecast accuracy of the meta-
model using multiple benchmarks: the historic electricity
prices, the prices computed by the unit commitment
model, and a prediction model trained not on the model
output but directly on the historic values.

Figure 10 shows the four different electricity price
time series for a given week. The historic (real) prices are
represented by the red solid line and the model-
determined prices by the gray solid line. Equivalent to
this is the dotted lines, the red one representing the price
prediction of the metamodel trained on the real data and
the gray one the price prediction of the metamodel
trained on the model data.

As mentioned in Section 3.1, the unit commitment
model has a lower variety of prices as model output com-
pared to the historic (real) data. This makes it easier for
the metamodel to depict the model prices than the real
ones, which is also reflected by the performance mea-
sures in Table 4.

In summary, it can be concluded that the meta-
model is suitable for application to the unit commit-
ment model and that sufficiently good results can be
achieved, sometimes even better than those of the
model being replaced.

4.3 | Determination of the optimal
system design using metamodels

For the case of the design optimization model, we ana-
lyze the accuracy of our metamodel for reproducing the
model's design decisions. As explained in Section 3.2,
individual metamodels are trained for the 20 design

FIGURE 9 Results of the pre-tests
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decisions made by the models. We conduct two separate
runs with different training data (each run including
hyperparameter optimization) to objectify our results.

Looking at the metamodel results for the design opti-
mization model, the feed-forward neural network shows
better results than the LSTM neural network. Figure 11

FIGURE 11 Evaluation of the

metamodel for the design optimization

model based on a feed-forward neural

network for two random training

datasets (gray and red)

TABLE 4 Performance measures of

the unit commitment model and the

metamodel

Comparison R2 %½ � MSE EUR2

MWh2

h i
RMSE EUR

MWh

� 	
MAPE %½ �

Real - Model 78:8 22:82 4:78 13:60

Real - Metamodelreal 82:9 16:21 4:03 12:08

Model - Metamodelmodel 88:0 7:21 2:69 8:54

FIGURE 10 Results of the

metamodel's performance on real data

vs model data
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shows the results for the feed-forward neural network for
the two separate runs. The various output features are
plotted on the x-axis and the bars indicate the coefficient
of determination (R2) separately for each run and feature.
The quality of the prediction of the individual features

varies significantly, whereby certain groups can be distin-
guished. The first group of features is predicted well in
both runs, whereas the second group is predicted poorly.
Finally, for the third group of features, the predictions
varied strongly depending on the training sample. A

FIGURE 12 Correlation analysis of the design optimization model

TABLE 5 Runtimes of the white-box dispatch model and the black box-metamodel

Model type
Metamodel training and
hyperparameter tuning

Runtime per
scenario Hardware specifications

White-box: non-simplified
dispatch model

— �2 h • Intel® Core(TM) i5-8250U CPU @ 1.60 GHz
• 32.00 GB RAM

Black-box: metamodel �0-2 h for training
�6-72 h for hyperparameter tuning,
depending on tuning strategy

<30 s • AMD A6-5200 APU with Radeon(TM) HD
Graphics 2.00 GHz

• 8.00 GB RAM
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value of the coefficient of determination close to zero
indicates that the metamodel cannot replicate the out-
come of the model correctly regarding this feature.

To understand the background of this pattern, corre-
lation analyses of the input and output features, as well
as the output features themselves are performed. The
results are shown in Figure 12. Input features are marked
with gray dots. Features that are predicted well in both
runs are marked with green dots and features that cannot
be predicted well in both runs are marked with red dots.
For the case that features are predicted well in one of the
two runs, they are marked with blue dots. Within the
matrix, red represents a negative and blue a positive cor-
relation between the features.

Firstly, it can be seen that most output features are
primarily correlated with the electricity demand “AC
building” and the hot water demand “H hot water”. Most
of the well-predicted output features are strongly corre-
lated to these two input features. The poor performance
in predicting some of the outputs indicates that the cho-
sen input set is too small to determine the optimal config-
uration of the metamodel during the training process.
The sample-dependent outputs exhibit correlations with
many of the other outputs, indicating that these outputs
cannot be predicted based on the limited input set alone,
for example, roof inclinations, roof availability, or

geographical location would be required to properly pre-
dict the optimal photovoltaic capacities.

5 | DISCUSSION: THE VALUE-
ADDED OF METAMODELS FOR
ENERGY SYSTEM MODELING

In this section, we summarize and discuss our findings
and derive general modeling recommendations for the
application of metamodels. As the number of ESMs used
in practice is large and their scopes and objectives differ
significantly, we now abstract from our results and derive
statements of a more general validity.

Our results indicate that the approach of meta-
modeling using a feed-forward neural network is highly
applicable to the dispatch model. In practice, this leads to
a reduction in the complexity, as the neural network-
based metamodel can save runtimes for each scenario
run once it is sufficiently trained. A comparison of the
runtimes of the unit commitment model (white-box)
against the metamodel (black-box) is shown in Table 5.

The resulting achievement of complexity reduction is
shown in Figure 13. It should be noted that the figure is
only a schematic illustration and the values may vary
depending on the model. In general, we assume that the
time for the development and implementation of the
metamodel is significantly shorter, as not every relation-
ship between the smallest components of the system
needs to be modeled individually. Even though the
hyperparameter optimization and the training can
require a lot of time, once the metamodel is ready for
use, time is saved with each simulation performed by the
metamodel. The runtime of the metamodel, once config-
ured, is substantially shorter than that of the unit com-
mitment model. Even if the configuration of the
metamodel should take longer than the modeling of the
unit commitment model, the metamodel will be faster as
the number of model runs increases. This feature of the
metamodel will be of great advantage if a large number
of different scenarios need to be considered. Each mod-
eler must, however, evaluate the trade-off between
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FIGURE 13 Complexity reduction dispatch model vs

metamodel (illustrative)

TABLE 6 Runtimes of the white-box system design model and black-box metamodel

Model type
Metamodel training and
hyperparameter tuning

Runtime per
scenario Hardware specifications

White box: system
design model

— � 0.8 h in a single core • Two Intel(R) Xeon(R) Platinum
8180 CPUs and

• 512 GB RAM

Black box: metamodel � 0-2 h for training
� 6-72 h for hyperparameter
tuning. Depending on tuning strategy

<30 s • AMD A6-5200 APU with
Radeon(TM) HD Graphics 2.00 GHz

• 8.00 GB RAM
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modeling effort and runtime savings to achieve an opti-
mum reduction in complexity.

In the application of our metamodeling approach to
the more complex design optimization models, we
encountered several obstacles. Initially, the results
showed that the simultaneous prediction of all output
features based on a single hyperparameter optimization
does not lead to the expected metamodel performance.
This may be because the relationships between the out-
puts cannot be correctly represented by the chosen meta-
model. Hence, other network topologies must be tested.
Moreover, it could be possible that the hyperparameters
for the individual outputs must be optimized separately.

The second challenge is that the design optimization
model is used to forecast future investments ex-ante,
which means that, unlike the dispatch model, there is no
real data that the metamodel can be trained on. Instead,
a white-box model is required first, based on which train-
ing data must be generated for the metamodel. In that
case, the metamodel will only be able to depict those rela-
tionships that are correctly represented in the white-box
model. Still, the benefit of the metamodel is to enhance
the number of possible scenario variants to be investi-
gated, thereby increasing the robustness of the model
results. Table 6 displays the runtimes of the white-box
and black-box models.

A hybrid approach would be a conceivable solution
which is shown schematically in Figure 14. As before, the
illustrated values may vary depending on the model.
First, a fundamental model is developed and some sce-
narios are considered. In this way, training data for the
metamodel is generated. The metamodel could then be
used to consider several more scenarios. At this point, it
must be considered whether the time saved during the
model runs can outweigh the additional work involved in
configuring the metamodel.

Furthermore, it should be noted that the metamodel
approaches analyzed in this study are black-box models.
This means that the metamodels are highly applicable for
results-oriented studies. However, if the exact relation-
ships between the individual components in the ESMs
are to be investigated, black box metamodels are not
practical and fundamental models should instead be
used. Hence, the modeler must keep in mind the tradeoff
between reduced model complexity and increasing the
loss of information when applying metamodeling
approaches to energy system analysis. A hybrid approach
combining white- and black-box models would again
offer a promising solution to this transparency issue.

6 | CONCLUSIONS

In this study, we investigated the question of whether a
reduction in complexity can be achieved by meta-
modeling ESMs using approaches based on deep learn-
ing. We selected two types of energy system optimization
model and evaluated the performance of deep learning-
based metamodeling approaches to come up with general
recommendations for the application of metamodels in
energy system modeling.

We applied metamodel based on a feed-forward neu-
ral network to the unit commitment model and demon-
strated that metamodeling is highly applicable to
predictive energy system optimization models. We found
that, as the metamodel is a black-box approach, the
implementation effort and the run time per scenario were
considerably lower compared to conventional white-box
modeling approaches. By reducing the implementation
effort as well as the runtime, a complexity reduction
could be achieved while maintaining the high accuracy
of the results. This could also help increase the robust-
ness of the modeling results, as metamodels enable the
investigation of a larger number of scenarios, thus
depicting the uncertainty of future developments more
precisely. A promising approach for handling uncertainty
is combining metamodeling with the design of the experi-
ment approach, as done by Nolting et al.21

The drawback of the black-box approach compared to
the underlying fundamental model lies in the traceability
of its results. Unlike in the case of a comparably straight-
forward unit commitment model, some difficulties arose
when applying the metamodel to the design optimization
model. We found that the metamodeling of more ESMs
that are used for ex-ante analysis (often in the form of a
greenfield analysis), including design optimization models,
is accompanied by higher demands on the input data for
training the metamodel. Additional information alongside
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the input data of the fundamental model may also be
required. Furthermore, the simultaneous forecasting of dif-
ferent interdependent outputs proved to be problematic.

Our results indicate that for ex-ante analyses, the
application of a hybrid approach is a promising strategy
for applying metamodels. For this, a selection of represen-
tative scenarios is initially evaluated using a fundamental
model, which is then followed by the training of a meta-
model to consider a variety of other scenarios with
shorter solving times. Thereby, the choice of an efficient
learning set is key whereby future works should identify
efficient sampling methods that result in the improved
training of the metamodel.

As discussed above, there is a need for further
research, especially in the metamodeling of design opti-
mization models. Research should be extended to models
with the same characteristics, namely: the forecasting of
future data without a historic data basis and the simulta-
neous optimization of several (interdependent) variables.
The metamodeling approaches considered in this study
demonstrate substantial potential for complexity reduc-
tions and can be transferred to various types of ESMs.
For future research, it would be of particular interest to
further evaluate and quantify the tradeoff between the
modeling effort of the metamodel and the time savings
and complexity reduction achieved.

NOMENCLATURE
Indices
g generation technology
i input feature
n output feature
t time step
y year

Symbols
σi tuple decision tree for input feature i
ti threshold value for input feature i
x ið Þ value of input feature i
yn reference value of output feature nbyn predicted value of output feature n
y average reference value
availabilityg,t availability [MW] of generation tech

g during time step t
capacityg,y installed capacity [MW] of generation

tech g per year y
demandt electricity demand [MW] in time step t
pricet day-ahead spot price [EUR/MWh] in time

step t
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ENDNOTES
* The application of metamodels based on artificial neural networks
to energy system optimization models on a large scale is amongst
the goals of ongoing research projects such as UNSEEN (funded
by the German Federal Ministry of Economic Affairs and Energy).

† For a brief introduction of ANNs, see also Reference 44.
‡ See Appendix B, Table B1 for a more detailed on the unit commit-
ment model.

§ An analysis of the price time series, both real and model-deter-
mined, shows that the model prices are preprocessed capped to a
certain price range due to model limitations. Working with
preprocessed data is common in machine learning and not neces-
sarily a problem.38 Therefore, the metamodel is trained on the
data in the price data representing the feasible model range. The
filtered data sets contain 24 307 of the original 26 304 data points.
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APPENDIX A.

FIGURE A1 KNIME workflow for random forests and artificial neural networks
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APPENDIX C.

TABLE C1 Relevant model properties of the design optimization model. All equations are described in Reference 58, to which the

numbering refers

Target function Restrictions (Extract) Spatial resolution Temporal resolution

Minimize annualized
energy cost including
discounted investment in
efficiency measures, new
supply technologies and
energy purchase costs

1. Cover heat, electricity
and hot water demand

2. Retain energy balances
3. Limit energy conversion
by efficiency

4. State of charge of
storage technologies
between time steps

5. Charging and
discharging limitations
of the storage

6. Retain capacity limits of
all technologies

Single building as a single
node model in a single
location. Different
buildings relate to different
geospatial locations and
weather conditions, as
described in Reference 56.

8760 hours in a single representative year.
The resolution varies with two levels
with first an aggregation to 12 typical
days and the full temporal resolution on
the second level, as described in detail in
Reference 59.
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